Modeling the Performance of an Integrated Photoelectrolysis System with 10× Solar Concentrators

نویسندگان

  • Yikai Chen
  • Chengxiang Xiang
  • Shu Hu
  • Nathan S. Lewis
چکیده

Two designs for an integrated photoelectrolysis system that uses a 10× concentrating solar collector have been investigated in detail. The system performance was evaluated using a multi-physics model that accounted for the properties of the tandem photoabsorbers, mass transport, and the electrocatalytic performance of the oxygen-evolution and hydrogen-evolution reactions (OER and HER, respectively). The solar-to-hydrogen (STH) conversion efficiencies and the ohmic losses associated with proton transport in the solution electrolyte and through the membrane of the photoelectrolysis system were evaluated systematically as a function of the cell dimensions, the operating temperatures, the bandgap combinations of the tandem cell, and the performance of both the photoabsorbers and electrocatalysts. Relative to designs of optimized systems that would operate without a solar concentrator, the optimized 10× solar concentrator designs possessed larger ohmic losses and exhibited less uniformity in the distribution of the current density along the width of the photoelectrode. To minimize resistive losses while maximizing the solar-to-hydrogen conversion efficiency, ηSTH, both of the designs, a two-dimensional “trough” design and a three-dimensional “bubble wrap” design, required that the electrode width or diameter, respectively, was no larger than a few millimeters. As the size of the electrodes increased beyond this limiting dimension, the ηSTH became more sensitive to the performance of the photoabsorbers and catalysts. At a fixed electrode dimension, increases in the operating temperature reduced the efficiency of cells with smaller electrodes, due to degradation in the performance of the photoabsorber with increasing temperature. In contrast, cells with larger electrode dimensions showed increases in efficiency as the temperature increased, due to increases in the rates of electrocatalysis and due to enhanced mass transport. The simulations indicted that cells that contained 10% photoabsorber area, and minimal amounts of Nafion or other permselective membranes (i.e. areal coverages and volumetric fractions of only a few percent of the cell), with the remaining area comprised of a suitable, low-cost inert, non porous material (flexible polymers, inert inorganic materials, etc.) should be able to produce high values of ηSTH, with ηSTH = 29.8% for an optimized design with a bandgap combination of 1.6 eV/0.9 eV in a tandem photoabsorber system at 350 K. © The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.0751410jes] All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Study of a Solar Integrated Central Heating System of a Residential Building Using Trnsys- an Hourly Simulation Model (RESEARCH NOTE)

In this investigation, the performance of an existing heating system of a residential building incorporated with an array of solar thermal collectors was studied. For this purpose, transient systems simulation program model was assembled to estimate the hour-by-hour performance of the existing and the system equipped with the solar thermal collectors in terms of the provided space air condition...

متن کامل

Thermodynamic modeling and comprehensive off-design performance analysis of a real integrated solar combined cycle power plant

In this paper thermodynamic modeling and comprehensive performance analysis of a real integrated solar combined cycle (ISCC) power plant are performed. Performance of the plant cycle is assessed in off-design condition and in two operation modes of power-boosting and fuel-saving. Such an approach has not been considered for an ISCC plant in the previous studies. Under studied ISCC which is loca...

متن کامل

Cost and performance analysis of an integrated solar combined cycle with two tanks for indirect thermal energy storage

In this paper, the annual and economic performance of an integrated solar combined cycle (ISCC) with indirect energy storage tanks is investigated. The study includes four scenarios, in which the combined cycle performance was studied exclusively in the first scenario. In the second scenario, the integrated solar combined cycle (ISCC) was examined, and the use of supplementary firing instead of...

متن کامل

Application of Solar Thermal Collectors to Improve the Energy Performance of the Fresh Air HVAC Systems

 In the preset study, the performance of a solar assisted heating, ventilation and air conditioning (HVAC) system in an operating theater building was studied. The yearly performances of the existing HVAC system and the system with the added solar collectors were simulated in terms of energy consumption and provided air conditions using a transient system simulation software (TRNSYS). In t...

متن کامل

Proposing New Algorithm for Modeling of Regenerative Fuel Cell (RFC) System

Regenerative Fuel Cell (RFC) systems are used for the enhancement of sustainable energy aspect in conventional fuel cells. In this study, a photovoltaic-electrolyzer-fuel cell integrated cycle has been presented. The proposed system has been designed as a novel approach for alleviating the restrictions  on energy streams in the RFC systems. Modeling of the system has been performed from the mas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014